Glutamine synthetase as a central element in hepatic glutamine and
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Summary

Glutamine synthetase (GS) in the liver is expressed in a small perivenous, highly specialized
hepatocyte population and is essential for the maintenance of low, non-toxic ammonia levels
in the organism. However, GS activity can be impaired by tyrosine nitration of the enzyme in
response to oxidative/nitrosative stress in a pH-sensitive way. The underlying molecular
mechanism as investigated by combined molecular simulations and in vitro experiments
indicates that tyrosine nitration can lead to a fully reversible and pH-sensitive regulation of
protein function. This approach was also used to understand the functional consequences of
several recently described point mutations of human GS with clinical relevance and to suggest

an approach to restore impaired GS activity.
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Introduction

There is a sophisticated structural and functional organization of ammonia and glutamine
metabolizing pathways in the liver acinus (Haussinger, 1983) (for a review see (Haussinger,
1990)). Glutamine synthetase (GS) is restricted to a small perivenous hepatocyte population
surrounding the hepatic venules, whereas periportal hepatocytes contain liver type
glutaminase (GLS2) and urea cycle enzymes (Gaasbeek Janzen et al., 1984; Gebhardt and
Mecke, 1983; Haussinger, 1983) (for a review see (Haussinger, 1990; Haussinger and Schliess,
2007)). GLS2 is activated by its product ammonia and acts as an intramitochondrial pH-
modulated ammonia amplifier. This amplification step is required for urea synthesis in view
of the high Km (ammonia) of carbamoylphosphate synthetase |, which exceeds by far the
physiological ammonia concentration in portal venous blood. Ammonia amplification by GLS2
is very pH sensitive, which provides one basis for adjusting flux through the bicarbonate-
consuming urea cycle to the needs of acid-base balance (for review see (Haussinger, 1990)).
Ammonia that escaped periportal urea synthesis is eliminated with high affinity by GS-
containing hepatocytes at the acinar outflow. Thus, in the liver acinus, glutamine is hydrolyzed
in periportal hepatocytes, whereas it is resynthesized by perivenous hepatocytes from the
ammonia left over by periportal urea synthesis (Fig. 1). This is the so-called intercellular
glutamine cycle, whose regulation is essential for the maintenance of bicarbonate and
ammonia homeostasis in the organism. Depending on the acid-base status, that way, the liver

can switch ammonia elimination from urea to glutamine synthesis.

Characteristics of perivenous GS-expressing hepatocytes

The perivenous GS-containing hepatocytes have also been termed scavenger cells because
they eliminate not only ammonia with high affinity but also at least some signal molecules
before the acinar blood enters the systemic circulation (Haussinger and Stehle, 1988).
Perivenous scavenger cells are well equipped for their task to eliminate ammonia with high
affinity through glutamine synthesis. They are the only hepatocytes also expressing the
ammonium transporter RhBG, the glutamate/aspartate transporter Gltl, ornithine
aminotransferase (OAT), and specifically take up glutamate and related dicarboxylates
(Cadoret et al., 2002; Ginguay et al., 2017; Kuo et al., 1991; Stoll and Haussinger, 1991; Weiner
et al., 2003) (Fig. 1). The R-catenin pathway critically controls the zonal distribution of GS, OAT,



RhBG, and axin2 (Leibing et al., 2018; Merhi et al., 2015; Sekine et al., 2007; Sekine et al., 2006;
Yang et al., 2014). Axin2 is a universal transcriptional target of B-catenin-dependent Wnt
signaling, and axin2- and GS-positive cells surrounding the central vein have recently been
implicated in the homeostatic renewal of the liver (Wang et al., 2015). In line with this, a recent
study on proteome profiling of separated GS-expressing hepatocytes identified several
proteins being highly enriched in perivenous GS-expressing hepatocytes compared to GS-
negative hepatocytes (Paluschinski et al., 2021). Among these proteins, heat shock protein 25
and basic transcription factor 3 (BTF3), which triggers undifferentiated, stem cell-like
properties in prostate tumor cells (Hu et al., 2019), were identified (Paluschinski et al., 2021).
This study also suggested that GS-positive hepatocytes may not be uniform, but may comprise
subpopulations, because immunohistochemistry showed that only 50-70% of the GS-

expressing hepatocytes also expressed Hsp25 and BTF3 (Paluschinski et al., 2021).

Liver glutamine synthesis and ammonium homeostasis

Destruction of the perivenous area in rat liver by applying appropriate doses of CCls impaired
ammonia removal in perfused rat liver by the abolition of glutamine release, whereas urea
synthesis remained unaffected. This finding suggested an important role of perivenous
scavenger cells in maintaining ammonia homeostasis. The suggestion was confirmed by the
finding that liver-specific deletion of GS in mice, without affecting other scavenger cell
markers, such as Glt-1, OAT, and RhBG, triggered systemic hyperammonemia in vivo with
corresponding sequelae such as cerebral protein tyrosine nitration and RNA oxidation
(Qvartskhava et al., 2015). Downregulation of liver GS is also observed in human liver cirrhosis
(for review see (H&aussinger, 1990)), which may contribute to the development of
hyperammonemia in cirrhosis. Interestingly, hyperammonemia was also observed in taurine
transporter (TauT) knockout mice (Qvartskhava et al., 2019). In young (3 months old) TauT k.o.
animals, this was due to a downregulation of RhBG-mediated ammonia uptake into
perivenous scavenger cells. By contrast, in older animals (12 months old), hyperammonemia

was due to an inactivating protein tyrosine nitration of liver GS (Qvartskhava et al., 2019).

GS and protein tyrosine nitration



Protein tyrosine nitration (PTN) of liver GS not only occurs in old TauT-knockout mice, but also
after exposure to lipopolysaccharide (LPS) (Gorg et al., 2005). PTN of GS in the human brain
was observed in epilepsy (Bidmon et al., 2008), after ammonia exposure of rat astrocytes and
portocavally shunted rats (Schliess et al., 2002), in hypoosmotically or benzodiazepine-treated
astrocytes (Haussinger and Goérg, 2010)), as a response to genetic deletion of GS in mice
(Qvartzkava et al. 2015), and in the brain from humans with liver cirrhosis and hepatic
encephalopathy (Gorg et al., 2010).

Previous analyses of sequences and structural and functional aspects revealed three classes
of GS. Of these, GS class Il enzymes occur in eukaryotes and a few bacteria families (Darrow
and Knotts, 1977; Edmands et al., 1987; Kumada et al., 1990), and human GS belongs to this
class (Liaw and Eisenberg, 1994). Its ten identical subunits form a homodecamer in which two
pentameric rings stack against each other (Krajewski et al., 2008) (Fig. 2A). The B-barrel-
shaped catalytic sites are harbored in the interfaces between two neighboring subunits,
resulting in ten catalytic sites. Computational (Issoglio et al., 2016; Moreira et al., 2017) and
in vitro experiments (Eisenberg et al., 2000; Liaw and Eisenberg, 1994; Wedler and Boyer,
1972; Wedler and Horn, 1976) on GS-catalyzed glutamine synthesis and ammonia
detoxification suggest a two-step catalytic mechanism (Fig. 2B). First, adenosine triphosphate
(ATP) binds to the catalytic site and induces conformational changes necessary for glutamate
binding. After transfer of the terminal phosphate group of ATP to the y-carboxylate group of
glutamate vyielding adenosine diphosphate (ADP) and y-glutamyl phosphate (GGP), an
ammonium ion binds to a negatively charged site(Moreira et al., 2017) and is deprotonated
to ammonia as the nucleophile (Krajewski et al., 2005; Moreira et al., 2016, 2017). Ammonia
then attacks GGP, and glutamine, ADP, and inorganic phosphate are released (Moreira et al.,
2017).

Mass spectrometry of peroxynitrite-exposed sheep GS showed that PTN occurred in the highly
conserved YFEDR motif of GS, likely targeting Y336 (Fig. 2C, 3A), and resulted in inactivation
of GS (Gorg et al., 2007; Gorg et al., 2005). PTN modifies key properties of a tyrosine residue,
including the phenol group pKa, redox potential, hydrophobicity, and volume (Batthyany et
al., 2017; Radi, 2013). Free energy computations predicted that the binding affinity of ATP
towards Y336-nitrated GS is significantly reduced relative to non-nitrated GS, but only in the
presence of the deprotonated and negatively charged 3’-nitro tyrosinate (Frieg et al., 2020)

(Fig. 3A, B). By contrast, in the presence of the neutral 3’-nitro tyrosine, the computations



suggested a more favorable binding affinity of ATP (Frieg et al., 2020). This observation could
be explained by an electron-withdrawing effect of the nitro group that likely reduces repulsive
forces between the phenyl ring and the electron-rich purine ring system of ATP (Martinez and
Iverson, 2012), promoting favorable stacking interactions (Frieg et al., 2020). The negatively
charged 3’-nitro tyrosinate not only reversed this effect but introduced increased repulsive
forces, explaining the decreased affinity towards ATP (Frieg et al., 2020). By contrast,
configurational free energy computations indicated that Y336 nitration only weakly influences
the kinetics of ATP binding (Frieg et al., 2020), which is at variance with the prediction for
tyrosine nitration in human manganese superoxide dismutase, according to which a drastically
increased energetic barrier for ligand entry results (Demicheli et al., 2016; Moreno et al.,
2011).

The pKa value of the phenolic hydroxyl group of free 3’-nitrotyrosine is ~7.3 (Radi, 2013) and
was calculated to decrease to ~5.3 in the case of nitrated Y336 within human GS (Frieg et al.,
2020) (Fig. 3B). Hence, under experimental conditions previously chosen (Gorg et al., 2006;
Gorgetal., 2007; Gorg et al., 2005) and at physiological pH of 7.4, > 99% of nitrated Y336 exist
as 3’-nitro tyrosinate according to the computed pKa. By contrast, at pH 4, ~95% of the
nitrated Y336 exist as 3’-nitro tyrosine. Indeed, the catalytic activity of Y336-nitrated GS could
be restored at pH 4 in vitro, whereas it was reduced at pH 6 and 7 (Fig. 3C). These results
indicate a fully reversible and pH-sensitive mechanism for regulating protein function by

tyrosine nitration (Frieg et al., 2020).

Congenital GS deficiency

Although defects of urea cycle enzymes in humans have been known for decades, it was in
2005 when the first cases of human glutamine synthetase mutations were described (Haberle
et al., 2005; Haberle et al., 2006) (for review see (Spodenkiewicz et al., 2016)). Two mutations
have been described initially, R324C and R341C, but the list of mutations is growing (Bennett
et al., 2020; Spodenkiewicz et al., 2016). In addition, also a homozygous deletion of the Glul
gene has been reported (Roifman et al., 2020). The R324 and R341C mutations result in early
neonatal death accompanied by multiple organ failure, severe cerebral malformations, and
skin abnormalities (Haberle et al., 2005; Haberle et al., 2006). By contrast, a patient with a

homozygous R324S mutant (Haberle et al., 2011) showed developmental delay and



neurological impairment, but survived six years (Spodenkiewicz et al., 2016). Here, glutamine
supplementation improved the clinical condition (Haberle et al., 2012).

R324 is part of the catalytic site (Krajewski et al., 2008), and we showed that it is directly
involved in ATP binding (Frieg et al., 2016a) (Fig. 4A). Molecular simulations revealed that the
direct interaction is lost in both the R324S and R324C variants (Frieg et al., 2016a). However,
this loss is partially compensated by indirect, water-mediated interactions between the
sidechains of $S324 or C324 and the B-phosphate group of ATP (Fig. 4B) (Frieg et al., 2016a).
The indirect interactions were significantly more frequent in the case of R324S than R341C,
explaining why the R324S variant likely conserved a higher level of residual activity (Fig. 4C)
(Frieg et al., 2016a).

No cure is currently available for targeted treatment of inborn GS deficiency (Haberle et al.,
2012). We hypothesized that molecules bridging the S324/ATP interaction better than water
result in tighter ATP binding, that way (partially) restoring (,,repairing”) GS activity. We focused
on trimethylglycine (betaine) as one such molecule (Frieg et al., 2016b) since it spontaneously
bound to the correct epitope in the vicinity of S324 and weakly stabilized ATP in molecular
simulations. Furthermore, it is a safe, well-tolerated, and inexpensive substance and has been
used to improve serum levels of liver enzymes in the context of fatty liver diseases (NASH)
(Abdelmalek et al., 2001; Barak et al., 1996; Craig, 2004). Betaine and structural analogs are
currently being investigated concerning their in vitro potency to restore the R324S GS activity.
In the R341C GS, a long-range interaction that causes catalytic inhibition of GS was identified
(Frieg et al., 2016a). In wild type GS, R341 is pointing away from the catalytic site and not
directly involved in substrate binding (Frieg et al., 2016a). Instead, it interacts with amino acids
harbored on the solvent-exposed helix H8, particularly H281, H284, and Y288 (Fig. 4D).
Molecular simulations suggested that R341C significantly reduces the mechanical stability
around helix H8 (Frieg et al., 2016a). For glutamate to bind to GS, ATP needs to induce a
structural rearrangement of helix H8 (Krajewski et al., 2008). Consequently, glutamate binding
was predicted to be disfavored in the R341C variant relative to wild type GS, and functional in
vitro experiments corroborated the prediction (Frieg et al., 2016a).

Recently, several suspected cases of patients carrying novel variants of the GS were reported
(Bennett et al., 2020; Spodenkiewicz et al., 2016) (Fig. 2D). As we previously investigated all
relevant stages of the GS catalytic cycle towards glutamine (Frieg et al., 2016a), we use these

results to suggest explanations at the structural level for impaired GS activity.



A case report of a five-year-old boy with severe epileptic encephalopathy was associated with
two probably damaging mutations, A195D and R319H (Spodenkiewicz et al., 2016), although
the authors could not confirm the A195D exchange. A195 forms a hydrophobic pocket with
C163 and W202 but is not directly involved in substrate binding (Fig. 4E). Interestingly, the
neighboring E196 is relevant for glutamate binding and Mg?* coordination according to our
structural models (Frieg et al., 2016a) (Fig. 4E). The introduction of a negatively charged
aspartate in the case of the A195D GS likely weakens the hydrophobic contacts, which may
displace E196 and, thereby, hamper glutamine synthesis. R319 is highly conserved in
prokaryotes and eukaryotes (Eisenberg et al., 2000), suggesting an essential catalytic function.
R319 binds to the terminal phosphate group of ATP during the first steps of glutamine
synthesis and the phosphate groups of ADP and GGP during the later catalytic stages (Fig. 4F),
suggesting that R319 is essential for the phosphate transfer from ATP to glutamate.
Substitution by histidine will likely weaken such interactions.

Another case report of two siblings with myoclonic epilepsy revealed two novel mutations,
K14N and a non-sense mutation leading to a stop codon in the GLUL gene (Bennett et al.,
2020). There are several interesting similarities and dissimilarities between these patients and
previously described ones (Bennett et al., 2020). As to GS, the most interesting difference is
that the latest variants result in a non-lethal phenotype, suggesting a GS residual activity,
which was, however, not further verified (Bennett et al., 2020). Prediction of functional effects
by PolyPhen-2 (Adzhubei et al., 2010) suggests K14N as “probably damaging”. This effect may
be explained in that K14 contributes to an ionic-interaction network in the dimerization
interface, likely contributing to the inter-subunit stability (Fig. 4G). Substitution by asparagine
leads to a loss of salt-bridges to D174 and D213, which likely destabilizes GS. As the patients’
mutation is compound heterozygous (Bennett et al., 2020), with one allele still carrying fully
functional GS, the non-lethal phenotype may also result from a reduced amount of functional

GS.

Concluding remarks

GS has a decisive role in the intercellular glutamine cycle, whose regulation is essential for the
maintenance of bicarbonate and ammonia homeostasis in the organism. Tyrosine nitration of
the enzyme in response to oxidative/nitrosative stress impairs GS activity in a pH-sensitive

way. Combined computational and experimental studies indicate that tyrosine nitration can



lead to a fully reversible and pH-sensitive regulation of protein function. GS catalyzes the
ligation of glutamate and ammonia in a complex two-step catalytic mechanism. The impact of
point mutations leading to congenital GS deficiency has been described in atomistic detail.

This understanding could provide the basis to restore impaired GS activity.
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Fig.1: Structural-functional organization of hepatic glutamine and ammonia metabolism.

Following the bloodstream, ammonia removal by urea and glutamine synthesis are organized in sequence.
Periportal urea synthesis is a high-capacity, but low-affinity system for ammonia removal, whereas downstream
glutamine synthetase corresponds to a high-affinity system for ammonia removal. Liver glutaminase (GLS2) acts
as a pH-modulated ammonia amplifier and adjusts bicarbonate-consuming urea synthesis to the needs of acid-
base homeostasis. Perivenous glutamine synthetase expressing hepatocytes (so-called “scavenger cells”) also
express Gltl, RhBG, and OAT to allow for high-affinity ammonia removal via glutamine synthesis. Adapted from
Haussinger 1990.
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Fig. 2: Structure of the human glutamine synthetase.

A: 3D structure of human glutamine synthetase (GS) (PDB-ID 2QC8 (Krajewski et al., 2008). The ten individual
subunits are colored differently, with atoms depicted as sphere-model. The bound ADP (dark blue sphere-model)
is in the catalytic site in the interface of two adjacent subunits. In A-C, the top panel always shows the side-view,
while the bottom panel shows the top-view. B: Schematic visualization of glutamine synthesis catalyzed by GS
(Eisenberg et al., 2000). The structural models of apo GS, GS bound to ATP, ATP and glutamate, and ADP and y-
glutamyl phosphate (GGP) were taken from (Frieg et al., 2016a). C, D: Dimeric GS model, in which two
neighboring subunits form a single catalytic site, complexing the substrates ATP, glutamate, and magnesium ions.
Amino acids identified as a target for tyrosine nitration (Bartesaghi et al., 2016; Gorg et al., 2005) (B) or as
clinically relevant mutation sites (Bennett et al., 2020; Haberle et al., 2005; Haberle et al., 2011; Spodenkiewicz
et al., 2016) (C) are shown as yellow or cyan sphere-models, respectively. In panels B - D, ATP, ADP, glutamate,
GGP, and magnesium ions are shown as dark blue or gray sphere-models, respectively.
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Fig. 3: pH-sensitive inhibition and activation of human GS.

A: ATP (blue) and tyrosine 336 (Y336, yellow) are depicted as a sphere-model in our ATP-bound model of GS
(Frieg et al., 2020). B: Schematic of the effect of tyrosine nitration. Nitration of free tyrosine decreases the pK,
of the phenolic hydroxyl group by three log units (Radi, 2013), leading to an equilibrium between 3-nitro tyrosine
and 3-nitro tyrosinate at physiological pH (adapted from ref. (Radi, 2013)). In GS, the calculated phenolic pK,
decreases by two additional log units (Frieg et al., 2020), such that the deprotonated state is preferred at
physiological pH. C: pH-dependent and ONOO™-mediated inhibition of GS activity. Purified human GS was
exposed to ONOO™ at concentrations of 0, 100, or 200 uM, and aliquots were taken for measuring GS activity. GS
activity in vehicle-treated control at pH 7 was set to 1, and activities measured under the other experimental
conditions are given relative to it. *: statistically significantly different. n.s.: not statistically significantly different.
Taken from ref. (Frieg et al., 2020)
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Fig. 4: Structural interpretation of clinically relevant GS mutations.

The structural model of the human GS bound to ATP, glutamate, and Mg?* ions (Frieg et al., 2016a) allows for the
structural interpretation of GS mutations. The enzyme structure is shown as cartoon model with subunits colored
green and orange. ATP, glutamate, Mg?* ions, and relevant amino acids are depicted as sphere-model. Amino
acids target by mutagenesis are colored cyan. A, B: Close up view of the catalytic site. The wild type R324 interacts
directly with the B-phosphate group of ATP (A). Instead, R324S uses an indirect, water-mediated interaction to
stabilize the substrate (B). C: Mean relative occurrence (error bars denote the standard error of the mean) of
water-mediated hydrogen bonds that connect the B-phosphate group of ATP and residues $324 or C324 in the
GS variants (adapted from ref. (Frieg et al., 2016a)). Strong and weak hydrogen bonds were defined by distance
cutoffs of 2.8 A and 3.2 A (Desiraju and Steiner, 2001). The stars indicate a significant difference (p < 0.05) D:
Interactions between R341 and H281, H284, and Y288 on helix H8 (colored brown). These interactions are lost
in R341C GS, leading to destabilization of H8, which, in turn, hampers structural adaptation mechanisms required
for glutamate binding (Frieg et al., 2016a). E: A195 forms a hydrophobic pocket with C163 and W202 and is in
the immediate neighborhood of E196, which binds to glutamate and Mg?*. F: R319 is part of the catalytic site and
complexing the phosphate groups of ATP (left) or ADP and the reactive intermediate y-glutamyl phosphate (GGP)
(right). G: K14 contributes to a hydrogen-bond network involving amino acids from two adjacent subunits, likely
contributing to the inter-subunit stability. R106 forms ionic interactions with E359 and cation-mt-interactions with
Y78. Both amino acids form the boundaries of the catalytic site.



